ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09640
166
109
v1v2 (latest)

AtomNAS: Fine-Grained End-to-End Neural Architecture Search

International Conference on Learning Representations (ICLR), 2019
20 December 2019
Jieru Mei
Yingwei Li
Xiaochen Lian
Xiaojie Jin
Linjie Yang
Alan Yuille
Jianchao Yang
ArXiv (abs)PDFHTMLGithub (222★)
Abstract

Search space design is very critical to neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit that is much smaller than the ones used in recent NAS algorithms. This search space allows a mix of operations by composing different types of atomic blocks, while the search space in previous methods only allows homogeneous operations. Based on this search space, we propose a resource-aware architecture search framework which automatically assigns the computational resources (e.g., output channel numbers) for each operation by jointly considering the performance and the computational cost. In addition, to accelerate the search process, we propose a dynamic network shrinkage technique which prunes the atomic blocks with negligible influence on outputs on the fly. Instead of a search-and-retrain two-stage paradigm, our method simultaneously searches and trains the target architecture. Our method achieves state-of-the-art performance under several FLOPs configurations on ImageNet with a small searching cost. We open our entire codebase at: https://github.com/meijieru/AtomNAS.

View on arXiv
Comments on this paper