ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09745
75
40

Vertex Feature Encoding and Hierarchical Temporal Modeling in a Spatial-Temporal Graph Convolutional Network for Action Recognition

20 December 2019
Konstantinos Papadopoulos
Enjie Ghorbel
Djamila Aouada
Björn E. Ottersten
    GNN
ArXivPDFHTML
Abstract

This paper extends the Spatial-Temporal Graph Convolutional Network (ST-GCN) for skeleton-based action recognition by introducing two novel modules, namely, the Graph Vertex Feature Encoder (GVFE) and the Dilated Hierarchical Temporal Convolutional Network (DH-TCN). On the one hand, the GVFE module learns appropriate vertex features for action recognition by encoding raw skeleton data into a new feature space. On the other hand, the DH-TCN module is capable of capturing both short-term and long-term temporal dependencies using a hierarchical dilated convolutional network. Experiments have been conducted on the challenging NTU RGB-D-60 and NTU RGB-D 120 datasets. The obtained results show that our method competes with state-of-the-art approaches while using a smaller number of layers and parameters; thus reducing the required training time and memory.

View on arXiv
Comments on this paper