ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.10405
11
103

Adversarial Cross-Domain Action Recognition with Co-Attention

22 December 2019
Boxiao Pan
Zhangjie Cao
Ehsan Adeli
Juan Carlos Niebles
    ViT
ArXivPDFHTML
Abstract

Action recognition has been a widely studied topic with a heavy focus on supervised learning involving sufficient labeled videos. However, the problem of cross-domain action recognition, where training and testing videos are drawn from different underlying distributions, remains largely under-explored. Previous methods directly employ techniques for cross-domain image recognition, which tend to suffer from the severe temporal misalignment problem. This paper proposes a Temporal Co-attention Network (TCoN), which matches the distributions of temporally aligned action features between source and target domains using a novel cross-domain co-attention mechanism. Experimental results on three cross-domain action recognition datasets demonstrate that TCoN improves both previous single-domain and cross-domain methods significantly under the cross-domain setting.

View on arXiv
Comments on this paper