ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.10808
38
16
v1v2v3 (latest)

H2O-Cloud: A Resource and Quality of Service-Aware Task Scheduling Framework for Warehouse-Scale Data Centers -- A Hierarchical Hybrid DRL (Deep Reinforcement Learning) based Approach

20 December 2019
Mingxi Cheng
Ji Li
P. Bogdan
Shahin Nazarian
ArXiv (abs)PDFHTML
Abstract

Cloud computing has attracted both end-users and Cloud Service Providers (CSPs) in recent years. Improving resource utilization rate (RUtR), such as CPU and memory usages on servers, while maintaining Quality-of-Service (QoS) is one key challenge faced by CSPs with warehouse-scale data centers. Prior works proposed various algorithms to reduce energy cost or to improve RUtR, which either lack the fine-grained task scheduling capabilities, or fail to take a comprehensive system model into consideration. This article presents H2O-Cloud, a Hierarchical and Hybrid Online task scheduling framework for warehouse-scale CSPs, to improve resource usage effectiveness while maintaining QoS. H2O-Cloud is highly scalable and considers comprehensive information such as various workload scenarios, cloud platform configurations, user request information and dynamic pricing model. The hierarchy and hybridity of the framework, combined with its deep reinforcement learning (DRL) engines, enable H2O-Cloud to efficiently start on-the-go scheduling and learning in an unpredictable environment without pre-training. Our experiments confirm the high efficiency of the proposed H2O-Cloud when compared to baseline approaches, in terms of energy and cost while maintaining QoS. Compared with a state-of-the-art DRL-based algorithm, H2O-Cloud achieves up to 201.17% energy cost efficiency improvement, 47.88% energy efficiency improvement and 551.76% reward rate improvement.

View on arXiv
Comments on this paper