ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.10891
14
2

Soft Q Network

20 December 2019
Jingbin Liu
Shuai Liu
Xinyang Gu
    OffRL
ArXivPDFHTML
Abstract

Deep Q Network (DQN) is a very successful algorithm, yet the inherent problem of reinforcement learning, i.e. the exploit-explore balance, remains. In this work, we introduce entropy regularization into DQN and propose SQN. We find that the backup equation of soft Q learning can enjoy the corrective feedback if we view the soft backup as policy improvement in the form of Q, instead of policy evaluation. We show that Soft Q Learning with Corrective Feedback (SQL-CF) underlies the on-plicy nature of SQL and the equivalence of SQL and Soft Policy Gradient (SPG). With these insights, we propose an on-policy version of deep Q learning algorithm, i.e. Q On-Policy (QOP). We experiment with QOP on a self-play environment called Google Research Football (GRF). The QOP algorithm exhibits great stability and efficiency in training GRF agents.

View on arXiv
Comments on this paper