ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.00220
47
5
v1v2v3 (latest)

Statistical Invariance of Betti Numbers in the Thermodynamic Regime

1 January 2020
Siddharth Vishwanath
Kenji Fukumizu
S. Kuriki
Bharath K. Sriperumbudur
ArXiv (abs)PDFHTML
Abstract

Topological Data Analysis (TDA) has become a promising tool to uncover low-dimensional features from high-dimensional data. Notwithstanding the advantages afforded by TDA, its adoption in statistical methodology has been limited by several reasons. In this paper we study the framework of topological inference through the lens of classical parametric inference in statistics. Suppose P={Pθ:θ∈Θ}\mathcal{P} = \{\mathbb{P}_\theta : \theta \in \Theta\}P={Pθ​:θ∈Θ} is a parametric family of distributions indexed by a set Θ\ThetaΘ, and Xn={X1,X2,…,Xn}\mathbb{X}_n = \{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n\}Xn​={X1​,X2​,…,Xn​} is observed iid at random from a distribution Pθ\mathbb{P}_\thetaPθ​. The asymptotic behaviour of the Betti numbers associated with the \v{C}ech complex of Xn\mathbb{X}_nXn​ contain both the topological and parametric information about the distribution of points. We investigate necessary and sufficient conditions under which topological inference is possible in this parametric setup.

View on arXiv
Comments on this paper