ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.00425
60
20
v1v2 (latest)

Kalman Filtering and Expectation Maximization for Multitemporal Spectral Unmixing

2 January 2020
R. Borsoi
Tales Imbiriba
Pau Closas
J. Bermudez
C. Richard
ArXiv (abs)PDFHTML
Abstract

The recent evolution of hyperspectral imaging technology and the proliferation of new emerging applications presses for the processing of multiple temporal hyperspectral images. In this work, we propose a novel spectral unmixing (SU) strategy using physically motivated parametric endmember representations to account for temporal spectral variability. By representing the multitemporal mixing process using a state-space formulation, we are able to exploit the Bayesian filtering machinery to estimate the endmember variability coefficients. Moreover, by assuming that the temporal variability of the abundances is small over short intervals, an efficient implementation of the expectation maximization (EM) algorithm is employed to estimate the abundances and the other model parameters. Simulation results indicate that the proposed strategy outperforms state-of-the-art multitemporal SU algorithms.

View on arXiv
Comments on this paper