ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02101
17
8

State Transition Modeling of the Smoking Behavior using LSTM Recurrent Neural Networks

7 January 2020
C. O. Odhiambo
C. Cole
Alaleh Torkjazi
H. Valafar
ArXivPDFHTML
Abstract

The use of sensors has pervaded everyday life in several applications including human activity monitoring, healthcare, and social networks. In this study, we focus on the use of smartwatch sensors to recognize smoking activity. More specifically, we have reformulated the previous work in detection of smoking to include in-context recognition of smoking. Our presented reformulation of the smoking gesture as a state-transition model that consists of the mini-gestures hand-to-lip, hand-on-lip, and hand-off-lip, has demonstrated improvement in detection rates nearing 100% using conventional neural networks. In addition, we have begun the utilization of Long-Short-Term Memory (LSTM) neural networks to allow for in-context detection of gestures with accuracy nearing 97%.

View on arXiv
Comments on this paper