ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02879
46
0
v1v2 (latest)

Adaptive Stopping Rule for Kernel-based Gradient Descent Algorithms

9 January 2020
Xiangyu Chang
Shao-Bo Lin
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose an adaptive stopping rule for kernel-based gradient descent (KGD) algorithms. We introduce the empirical effective dimension to quantify the increments of iterations in KGD and derive an implementable early stopping strategy. We analyze the performance of the adaptive stopping rule in the framework of learning theory. Using the recently developed integral operator approach, we rigorously prove the optimality of the adaptive stopping rule in terms of showing the optimal learning rates for KGD equipped with this rule. Furthermore, a sharp bound on the number of iterations in KGD equipped with the proposed early stopping rule is also given to demonstrate its computational advantage.

View on arXiv
Comments on this paper