ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05674
19
48

Shifted and Squeezed 8-bit Floating Point format for Low-Precision Training of Deep Neural Networks

16 January 2020
Léopold Cambier
Anahita Bhiwandiwalla
Ting Gong
M. Nekuii
Oguz H. Elibol
Hanlin Tang
    MQ
ArXivPDFHTML
Abstract

Training with larger number of parameters while keeping fast iterations is an increasingly adopted strategy and trend for developing better performing Deep Neural Network (DNN) models. This necessitates increased memory footprint and computational requirements for training. Here we introduce a novel methodology for training deep neural networks using 8-bit floating point (FP8) numbers. Reduced bit precision allows for a larger effective memory and increased computational speed. We name this method Shifted and Squeezed FP8 (S2FP8). We show that, unlike previous 8-bit precision training methods, the proposed method works out-of-the-box for representative models: ResNet-50, Transformer and NCF. The method can maintain model accuracy without requiring fine-tuning loss scaling parameters or keeping certain layers in single precision. We introduce two learnable statistics of the DNN tensors - shifted and squeezed factors that are used to optimally adjust the range of the tensors in 8-bits, thus minimizing the loss in information due to quantization.

View on arXiv
Comments on this paper