ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.06485
47
1
v1v2 (latest)

K-NN active learning under local smoothness assumption

17 January 2020
Boris Ndjia Njike
Xavier Siebert
ArXiv (abs)PDFHTML
Abstract

There is a large body of work on convergence rates either in passive or active learning. Here we first outline some of the main results that have been obtained, more specifically in a nonparametric setting under assumptions about the smoothness of the regression function (or the boundary between classes) and the margin noise. We discuss the relative merits of these underlying assumptions by putting active learning in perspective with recent work on passive learning. We design an active learning algorithm with a rate of convergence better than in passive learning, using a particular smoothness assumption customized for k-nearest neighbors. Unlike previous active learning algorithms, we use a smoothness assumption that provides a dependence on the marginal distribution of the instance space. Additionally, our algorithm avoids the strong density assumption that supposes the existence of the density function of the marginal distribution of the instance space and is therefore more generally applicable.

View on arXiv
Comments on this paper