ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.09332
18
11

An Analysis of Word2Vec for the Italian Language

25 January 2020
Giovanni Di Gennaro
A. Buonanno
Antonio Di Girolamo
A. Ospedale
F. Palmieri
Gianfranco Fedele
ArXivPDFHTML
Abstract

Word representation is fundamental in NLP tasks, because it is precisely from the coding of semantic closeness between words that it is possible to think of teaching a machine to understand text. Despite the spread of word embedding concepts, still few are the achievements in linguistic contexts other than English. In this work, analysing the semantic capacity of the Word2Vec algorithm, an embedding for the Italian language is produced. Parameter setting such as the number of epochs, the size of the context window and the number of negatively backpropagated samples is explored.

View on arXiv
Comments on this paper