264
v1v2v3v4 (latest)

NLocalSAT: Boosting Local Search with Solution Prediction

International Joint Conference on Artificial Intelligence (IJCAI), 2020
Abstract

The Boolean satisfiability problem (SAT) is a famous NP-complete problem in computer science. An effective way for solving a satisfiable SAT problem is the stochastic local search (SLS). However, in this method, the initialization is assigned in a random manner, which impacts the effectiveness of SLS solvers. To address this problem, we propose NLocalSAT. NLocalSAT combines SLS with a solution prediction model, which boosts SLS by changing initialization assignments with a neural network. We evaluated NLocalSAT on five SLS solvers (CCAnr, Sparrow, CPSparrow, YalSAT, and probSAT) with instances in the random track of SAT Competition 2018. The experimental results show that solvers with NLocalSAT achieve 27% ~ 62% improvement over the original SLS solvers.

View on arXiv
Comments on this paper