ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.00367
14
27

Interpreting video features: a comparison of 3D convolutional networks and convolutional LSTM networks

2 February 2020
Joonatan Mänttäri
Sofia Broomé
John Folkesson
Hedvig Kjellström
    FAtt
ArXivPDFHTML
Abstract

A number of techniques for interpretability have been presented for deep learning in computer vision, typically with the goal of understanding what the networks have based their classification on. However, interpretability for deep video architectures is still in its infancy and we do not yet have a clear concept of how to decode spatiotemporal features. In this paper, we present a study comparing how 3D convolutional networks and convolutional LSTM networks learn features across temporally dependent frames. This is the first comparison of two video models that both convolve to learn spatial features but have principally different methods of modeling time. Additionally, we extend the concept of meaningful perturbation introduced by \cite{MeaningFulPert} to the temporal dimension, to identify the temporal part of a sequence most meaningful to the network for a classification decision. Our findings indicate that the 3D convolutional model concentrates on shorter events in the input sequence, and places its spatial focus on fewer, contiguous areas.

View on arXiv
Comments on this paper