ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.01070
15
9

The Node Weight Dependent Traveling Salesperson Problem: Approximation Algorithms and Randomized Search Heuristics

4 February 2020
Jakob Bossek
Katrin Casel
P. Kerschke
Frank Neumann
ArXiv (abs)PDFHTML
Abstract

Several important optimization problems in the area of vehicle routing can be seen as a variant of the classical Traveling Salesperson Problem (TSP). In the area of evolutionary computation, the traveling thief problem (TTP) has gained increasing interest over the last 5 years. In this paper, we investigate the effect of weights on such problems, in the sense that the cost of traveling increases with respect to the weights of nodes already visited during a tour. This provides abstractions of important TSP variants such as the Traveling Thief Problem and time dependent TSP variants, and allows to study precisely the increase in difficulty caused by weight dependence. We provide a 3.59-approximation for this weight dependent version of TSP with metric distances and bounded positive weights. Furthermore, we conduct experimental investigations for simple randomized local search with classical mutation operators and two variants of the state-of-the-art evolutionary algorithm EAX adapted to the weighted TSP. Our results show the impact of the node weights on the position of the nodes in the resulting tour.

View on arXiv
Comments on this paper