ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.01776
50
10
v1v2 (latest)

Evaluating approval-based multiwinner voting in terms of robustness to noise

5 February 2020
I. Caragiannis
C. Kaklamanis
Nikos Karanikolas
George A. Krimpas
    AAML
ArXiv (abs)PDFHTML
Abstract

Approval-based multiwinner voting rules have recently received much attention in the Computational Social Choice literature. Such rules aggregate approval ballots and determine a winning committee of alternatives. To assess effectiveness, we propose to employ new noise models that are specifically tailored for approval votes and committees. These models take as input a ground truth committee and return random approval votes to be thought of as noisy estimates of the ground truth. A minimum robustness requirement for an approval-based multiwinner voting rule is to return the ground truth when applied to profiles with sufficiently many noisy votes. Our results indicate that approval-based multiwinner voting is always robust to reasonable noise. We further refine this finding by presenting a hierarchy of rules in terms of how robust to noise they are.

View on arXiv
Comments on this paper