ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02000
12
2

Aligning the Pretraining and Finetuning Objectives of Language Models

5 February 2020
Nuo Wang Pierse
Jing Lu
    AI4CE
ArXivPDFHTML
Abstract

We demonstrate that explicitly aligning the pretraining objectives to the finetuning objectives in language model training significantly improves the finetuning task performance and reduces the minimum amount of finetuning examples required. The performance margin gained from objective alignment allows us to build language models with smaller sizes for tasks with less available training data. We provide empirical evidence of these claims by applying objective alignment to concept-of-interest tagging and acronym detection tasks. We found that, with objective alignment, our 768 by 3 and 512 by 3 transformer language models can reach accuracy of 83.9%/82.5% for concept-of-interest tagging and 73.8%/70.2% for acronym detection using only 200 finetuning examples per task, outperforming the 768 by 3 model pretrained without objective alignment by +4.8%/+3.4% and +9.9%/+6.3%. We name finetuning small language models in the presence of hundreds of training examples or less "Few Example learning". In practice, Few Example Learning enabled by objective alignment not only saves human labeling costs, but also makes it possible to leverage language models in more real-time applications.

View on arXiv
Comments on this paper