ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02033
14
19

Rotation-invariant Mixed Graphical Model Network for 2D Hand Pose Estimation

5 February 2020
Deying Kong
Haoyu Ma
Yifei Chen
Xiaohui Xie
    3DH
ArXivPDFHTML
Abstract

In this paper, we propose a new architecture named Rotation-invariant Mixed Graphical Model Network (R-MGMN) to solve the problem of 2D hand pose estimation from a monocular RGB image. By integrating a rotation net, the R-MGMN is invariant to rotations of the hand in the image. It also has a pool of graphical models, from which a combination of graphical models could be selected, conditioning on the input image. Belief propagation is performed on each graphical model separately, generating a set of marginal distributions, which are taken as the confidence maps of hand keypoint positions. Final confidence maps are obtained by aggregating these confidence maps together. We evaluate the R-MGMN on two public hand pose datasets. Experiment results show our model outperforms the state-of-the-art algorithm which is widely used in 2D hand pose estimation by a noticeable margin.

View on arXiv
Comments on this paper