ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02592
24
7
v1v2v3 (latest)

Equivalence relations and LpL^pLp distances between time series with application to the Black Summer Australian bushfires

7 February 2020
Nick James
Max Menzies
    AI4TS
ArXiv (abs)PDFHTML
Abstract

This paper introduces a new framework of algebraic equivalence relations between time series and new distance metrics between them, then applies these to investigate the Australian ``Black Summer'' bushfire season of 2019-2020. First, we introduce a general framework for defining equivalence between time series, heuristically intended to be equivalent if they differ only up to noise. Our first specific implementation is based on using change point algorithms and comparing statistical quantities such as mean or variance in stationary segments. We thus derive the existence of such equivalence relations on the space of time series, such that the quotient spaces can be equipped with a metrizable topology. Next, we illustrate specifically how to define and compute such distances among a collection of time series and perform clustering and additional analysis thereon. Then, we apply these insights to analyze air quality data across New South Wales, Australia, during the 2019-2020 bushfires. There, we investigate structural similarity with respect to this data and identify locations that were impacted anonymously by the fires relative to their location. This may have implications regarding the appropriate management of resources to avoid gaps in the defense against future fires.

View on arXiv
Comments on this paper