ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03309
18
6

A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome Prediction

9 February 2020
Hanbiehn Kim
Hieu Nguyen
Qingchu Jin
Sharmila Tamby
Tatiana Gelaf Romer
E. Sung
Ran Liu
J. Greenstein
J. Suarez
C. Storm
R. Winslow
R. Stevens
ArXivPDFHTML
Abstract

Patients resuscitated from cardiac arrest (CA) face a high risk of neurological disability and death, however pragmatic methods are lacking for accurate and reliable prognostication. The aim of this study was to build computational models to predict post-CA outcome by leveraging high-dimensional patient data available early after admission to the intensive care unit (ICU). We hypothesized that model performance could be enhanced by integrating physiological time series (PTS) data and by training machine learning (ML) classifiers. We compared three models integrating features extracted from the electronic health records (EHR) alone, features derived from PTS collected in the first 24hrs after ICU admission (PTS24), and models integrating PTS24 and EHR. Outcomes of interest were survival and neurological outcome at ICU discharge. Combined EHR-PTS24 models had higher discrimination (area under the receiver operating characteristic curve [AUC]) than models which used either EHR or PTS24 alone, for the prediction of survival (AUC 0.85, 0.80 and 0.68 respectively) and neurological outcome (0.87, 0.83 and 0.78). The best ML classifier achieved higher discrimination than the reference logistic regression model (APACHE III) for survival (AUC 0.85 vs 0.70) and neurological outcome prediction (AUC 0.87 vs 0.75). Feature analysis revealed previously unknown factors to be associated with post-CA recovery. Results attest to the effectiveness of ML models for post-CA predictive modeling and suggest that PTS recorded in very early phase after resuscitation encode short-term outcome probabilities.

View on arXiv
Comments on this paper