ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03331
9
15

MDEA: Malware Detection with Evolutionary Adversarial Learning

9 February 2020
Xiruo Wang
Risto Miikkulainen
    AAML
ArXivPDFHTML
Abstract

Malware detection have used machine learning to detect malware in programs. These applications take in raw or processed binary data to neural network models to classify as benign or malicious files. Even though this approach has proven effective against dynamic changes, such as encrypting, obfuscating and packing techniques, it is vulnerable to specific evasion attacks where that small changes in the input data cause misclassification at test time. This paper proposes a new approach: MDEA, an Adversarial Malware Detection model uses evolutionary optimization to create attack samples to make the network robust against evasion attacks. By retraining the model with the evolved malware samples, its performance improves a significant margin.

View on arXiv
Comments on this paper