ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03342
11
35

Dynamic Inference: A New Approach Toward Efficient Video Action Recognition

9 February 2020
Wenhao Wu
Dongliang He
Xiao Tan
Shifeng Chen
Yi Yang
Shilei Wen
ArXivPDFHTML
Abstract

Though action recognition in videos has achieved great success recently, it remains a challenging task due to the massive computational cost. Designing lightweight networks is a possible solution, but it may degrade the recognition performance. In this paper, we innovatively propose a general dynamic inference idea to improve inference efficiency by leveraging the variation in the distinguishability of different videos. The dynamic inference approach can be achieved from aspects of the network depth and the number of input video frames, or even in a joint input-wise and network depth-wise manner. In a nutshell, we treat input frames and network depth of the computational graph as a 2-dimensional grid, and several checkpoints are placed on this grid in advance with a prediction module. The inference is carried out progressively on the grid by following some predefined route, whenever the inference process comes across a checkpoint, an early prediction can be made depending on whether the early stop criteria meets. For the proof-of-concept purpose, we instantiate three dynamic inference frameworks using two well-known backbone CNNs. In these instances, we overcome the drawback of limited temporal coverage resulted from an early prediction by a novel frame permutation scheme, and alleviate the conflict between progressive computation and video temporal relation modeling by introducing an online temporal shift module. Extensive experiments are conducted to thoroughly analyze the effectiveness of our ideas and to inspire future research efforts. Results on various datasets also evident the superiority of our approach.

View on arXiv
Comments on this paper