261

Distributed Learning with Dependent Samples

IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2020
Abstract

This paper focuses on learning rate analysis of distributed kernel ridge regression for strong mixing sequences. Using a recently developed integral operator approach and a classical covariance inequality for Banach-valued strong mixing sequences, we succeed in deriving optimal learning rate for distributed kernel ridge regression. As a byproduct, we also deduce a sufficient condition for the mixing property to guarantee the optimal learning rates for kernel ridge regression. Our results extend the applicable range of distributed learning from i.i.d. samples to non-i.i.d. sequences.

View on arXiv
Comments on this paper