ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.05646
27
232

Adversarial Machine Learning -- Industry Perspectives

4 February 2020
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
    AAML
    SILM
ArXivPDFHTML
Abstract

Based on interviews with 28 organizations, we found that industry practitioners are not equipped with tactical and strategic tools to protect, detect and respond to attacks on their Machine Learning (ML) systems. We leverage the insights from the interviews and we enumerate the gaps in perspective in securing machine learning systems when viewed in the context of traditional software security development. We write this paper from the perspective of two personas: developers/ML engineers and security incident responders who are tasked with securing ML systems as they are designed, developed and deployed ML systems. The goal of this paper is to engage researchers to revise and amend the Security Development Lifecycle for industrial-grade software in the adversarial ML era.

View on arXiv
Comments on this paper