ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06189
49
23
v1v2 (latest)

Stochasticity of Deterministic Gradient Descent: Large Learning Rate for Multiscale Objective Function

14 February 2020
Lingkai Kong
Molei Tao
ArXiv (abs)PDFHTML
Abstract

This article suggests that deterministic Gradient Descent, which does not use any stochastic gradient approximation, can still exhibit stochastic behaviors. In particular, it shows that if the objective function exhibit multiscale behaviors, then in a large learning rate regime which only resolves the macroscopic but not the microscopic details of the objective, the deterministic GD dynamics can become chaotic and convergent not to a local minimizer but to a statistical distribution. A sufficient condition is also established for approximating this long-time statistical limit by a rescaled Gibbs distribution. Both theoretical and numerical demonstrations are provided, and the theoretical part relies on the construction of a stochastic map that uses bounded noise (as opposed to discretized diffusions).

View on arXiv
Comments on this paper