42
8

Parallel Algorithms for Small Subgraph Counting

Abstract

Subgraph counting is a fundamental problem in analyzing massive graphs, often studied in the context of social and complex networks. There is a rich literature on designing efficient, accurate, and scalable algorithms for this problem. In this work, we tackle this challenge and design several new algorithms for subgraph counting in the Massively Parallel Computation (MPC) model: Given a graph GG over nn vertices, mm edges and TT triangles, our first main result is an algorithm that, with high probability, outputs a (1+ε)(1+\varepsilon)-approximation to TT, with optimal round and space complexity provided any Smax(m,n2/m)S \geq \max{(\sqrt m, n^2/m)} space per machine, assuming T=Ω(m/n)T=\Omega(\sqrt{m/n}). Our second main result is an O~δ(loglogn)\tilde{O}_{\delta}(\log \log n)-rounds algorithm for exactly counting the number of triangles, parametrized by the arboricity α\alpha of the input graph. The space per machine is O(nδ)O(n^{\delta}) for any constant δ\delta, and the total space is O(mα)O(m\alpha), which matches the time complexity of (combinatorial) triangle counting in the sequential model. We also prove that this result can be extended to exactly counting kk-cliques for any constant kk, with the same round complexity and total space O(mαk2)O(m\alpha^{k-2}). Alternatively, allowing O(α2)O(\alpha^2) space per machine, the total space requirement reduces to O(nα2)O(n\alpha^2). Finally, we prove that a recent result of Bera, Pashanasangi and Seshadhri (ITCS 2020) for exactly counting all subgraphs of size at most 55, can be implemented in the MPC model in O~δ(logn)\tilde{O}_{\delta}(\sqrt{\log n}) rounds, O(nδ)O(n^{\delta}) space per machine and O(mα3)O(m\alpha^3) total space. Therefore, this result also exhibits the phenomenon that a time bound in the sequential model translates to a space bound in the MPC model.

View on arXiv
Comments on this paper