ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08860
16
78

Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning

20 February 2020
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
    PINN
    AI4CE
ArXivPDFHTML
Abstract

In this work, we introduce Dissipative SymODEN, a deep learning architecture which can infer the dynamics of a physical system with dissipation from observed state trajectories. To improve prediction accuracy while reducing network size, Dissipative SymODEN encodes the port-Hamiltonian dynamics with energy dissipation and external input into the design of its computation graph and learns the dynamics in a structured way. The learned model, by revealing key aspects of the system, such as the inertia, dissipation, and potential energy, paves the way for energy-based controllers.

View on arXiv
Comments on this paper