ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08936
27
65

Meta-learning for mixed linear regression

20 February 2020
Weihao Kong
Raghav Somani
Zhao-quan Song
Sham Kakade
Sewoong Oh
ArXivPDFHTML
Abstract

In modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labeled data. These include data from medical image processing and robotic interaction. Even though each individual task cannot be meaningfully trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting some similarities. We study a fundamental question of interest: When can abundant tasks with small data compensate for lack of tasks with big data? We focus on a canonical scenario where each task is drawn from a mixture of kkk linear regressions, and identify sufficient conditions for such a graceful exchange to hold; The total number of examples necessary with only small data tasks scales similarly as when big data tasks are available. To this end, we introduce a novel spectral approach and show that we can efficiently utilize small data tasks with the help of Ω~(k3/2)\tilde\Omega(k^{3/2})Ω~(k3/2) medium data tasks each with Ω~(k1/2)\tilde\Omega(k^{1/2})Ω~(k1/2) examples.

View on arXiv
Comments on this paper