ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.09247
23
2
v1v2 (latest)

Is Aligning Embedding Spaces a Challenging Task? A Study on Heterogeneous Embedding Alignment Methods

21 February 2020
Russa Biswas
Mehwish Alam
Harald Sack
ArXiv (abs)PDFHTML
Abstract

Representation Learning of words and Knowledge Graphs (KG) into low dimensional vector spaces along with its applications to many real-world scenarios have recently gained momentum. In order to make use of multiple KG embeddings for knowledge-driven applications such as question answering, named entity disambiguation, knowledge graph completion, etc., alignment of different KG embedding spaces is necessary. In addition to multilinguality and domain-specific information, different KGs pose the problem of structural differences making the alignment of the KG embeddings more challenging. This paper provides a theoretical analysis and comparison of the state-of-the-art alignment methods between two embedding spaces representing entity-entity and entity-word. This paper also aims at assessing the capability and short-comings of the existing alignment methods on the pretext of different applications.

View on arXiv
Comments on this paper