ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10445
11
155

Deep Nearest Neighbor Anomaly Detection

24 February 2020
Liron Bergman
Niv Cohen
Yedid Hoshen
    UQCV
ArXivPDFHTML
Abstract

Nearest neighbors is a successful and long-standing technique for anomaly detection. Significant progress has been recently achieved by self-supervised deep methods (e.g. RotNet). Self-supervised features however typically under-perform Imagenet pre-trained features. In this work, we investigate whether the recent progress can indeed outperform nearest-neighbor methods operating on an Imagenet pretrained feature space. The simple nearest-neighbor based-approach is experimentally shown to outperform self-supervised methods in: accuracy, few shot generalization, training time and noise robustness while making fewer assumptions on image distributions.

View on arXiv
Comments on this paper