ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11002
6
83

Turning 30: New Ideas in Inductive Logic Programming

25 February 2020
Andrew Cropper
Sebastijan Dumancic
Stephen Muggleton
    LRM
    AI4CE
ArXivPDFHTML
Abstract

Common criticisms of state-of-the-art machine learning include poor generalisation, a lack of interpretability, and a need for large amounts of training data. We survey recent work in inductive logic programming (ILP), a form of machine learning that induces logic programs from data, which has shown promise at addressing these limitations. We focus on new methods for learning recursive programs that generalise from few examples, a shift from using hand-crafted background knowledge to \emph{learning} background knowledge, and the use of different technologies, notably answer set programming and neural networks. As ILP approaches 30, we also discuss directions for future research.

View on arXiv
Comments on this paper