ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11582
38
8
v1v2v3 (latest)

Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart for Nonconvex Optimization

26 February 2020
Yi Zhou
Zhe Wang
Kaiyi Ji
Yingbin Liang
Vahid Tarokh
ArXiv (abs)PDFHTML
Abstract

Various types of parameter restart schemes have been proposed for accelerated gradient algorithms to facilitate their practical convergence in convex optimization. However, the convergence properties of accelerated gradient algorithms under parameter restart remain obscure in nonconvex optimization. In this paper, we propose a novel accelerated proximal gradient algorithm with parameter restart (named APG-restart) for solving nonconvex and nonsmooth problems. Our APG-restart is designed to 1) allow for adopting flexible parameter restart schemes that cover many existing ones; 2) have a global sub-linear convergence rate in nonconvex and nonsmooth optimization; and 3) have guaranteed convergence to a critical point and have various types of asymptotic convergence rates depending on the parameterization of local geometry in nonconvex and nonsmooth optimization. Numerical experiments demonstrate the effectiveness of our proposed algorithm.

View on arXiv
Comments on this paper