9
0

Squashed Shifted PMI Matrix: Bridging Word Embeddings and Hyperbolic Spaces

Abstract

We show that removing sigmoid transformation in the skip-gram with negative sampling (SGNS) objective does not harm the quality of word vectors significantly and at the same time is related to factorizing a squashed shifted PMI matrix which, in turn, can be treated as a connection probabilities matrix of a random graph. Empirically, such graph is a complex network, i.e. it has strong clustering and scale-free degree distribution, and is tightly connected with hyperbolic spaces. In short, we show the connection between static word embeddings and hyperbolic spaces through the squashed shifted PMI matrix using analytical and empirical methods.

View on arXiv
Comments on this paper