ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.12313
13
0
v1v2 (latest)

On Local Computation for Optimization in Multi-Agent Systems

27 February 2020
Robin Brown
Federico Rossi
Kiril Solovey
Michael T. Wolf
Marco Pavone
ArXiv (abs)PDFHTML
Abstract

A number of prototypical optimization problems in multi-agent systems (e.g. task allocation and network load-sharing) exhibit a highly local structure: that is, each agent's decision variables are only directly coupled to few other agent's variables through the objective function or the constraints. Nevertheless, existing algorithms for distributed optimization generally do not exploit the locality structure of the problem, requiring all agents to compute or exchange the full set of decision variables. In this paper, we develop a rigorous notion of "locality" that relates the structural properties of a linearly-constrained convex optimization problem (in particular, the sparsity structure of the constraint matrix and the objective function) to the amount of information that agents should exchange to compute an arbitrarily high-quality approximation to the problem from a cold-start. We leverage the notion of locality to develop a locality-aware distributed optimization algorithm, and we show that, for problems where individual agents only require to know a small portion of the optimal solution, the algorithm requires very limited inter-agent communication. Numerical results show that the convergence rate of our algorithm is directly explained by the locality parameter proposed, and that the proposed theoretical bounds are remarkably tight for well-conditioned problems.

View on arXiv
Comments on this paper