ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.12344
20
5

Generating Followup Questions for Interpretable Multi-hop Question Answering

27 February 2020
Christopher Malon
Bing Bai
ArXivPDFHTML
Abstract

We propose a framework for answering open domain multi-hop questions in which partial information is read and used to generate followup questions, to finally be answered by a pretrained single-hop answer extractor. This framework makes each hop interpretable, and makes the retrieval associated with later hops as flexible and specific as for the first hop. As a first instantiation of this framework, we train a pointer-generator network to predict followup questions based on the question and partial information. This provides a novel application of a neural question generation network, which is applied to give weak ground truth single-hop followup questions based on the final answers and their supporting facts. Learning to generate followup questions that select the relevant answer spans against downstream supporting facts, while avoiding distracting premises, poses an exciting semantic challenge for text generation. We present an evaluation using the two-hop bridge questions of HotpotQA.

View on arXiv
Comments on this paper