42
32

On the Hardness of the Lee Syndrome Decoding Problem

Abstract

In this paper we study the hardness of the syndrome decoding problem over finite rings endowed with the Lee metric. We first prove that the decisional version of the problem is NP-complete, by a reduction from the 3-dimensional matching problem. Then, we study the actual complexity of solving the problem, by translating the best known solvers in the Hamming metric over finite fields to the Lee metric over finite rings, as well as proposing some novel solutions. For the analyzed algorithms, we assess the computational complexity in both the finite and asymptotic regimes.

View on arXiv
Comments on this paper