ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.00406
14
13

FMT:Fusing Multi-task Convolutional Neural Network for Person Search

1 March 2020
Sulan Zhai
Shunqiang Liu
Tianlin Li
Jin Tang
ArXivPDFHTML
Abstract

Person search is to detect all persons and identify the query persons from detected persons in the image without proposals and bounding boxes, which is different from person re-identification. In this paper, we propose a fusing multi-task convolutional neural network(FMT-CNN) to tackle the correlation and heterogeneity of detection and re-identification with a single convolutional neural network. We focus on how the interplay of person detection and person re-identification affects the overall performance. We employ person labels in region proposal network to produce features for person re-identification and person detection network, which can improve the accuracy of detection and re-identification simultaneously. We also use a multiple loss to train our re-identification network. Experiment results on CUHK-SYSU Person Search dataset show that the performance of our proposed method is superior to state-of-the-art approaches in both mAP and top-1.

View on arXiv
Comments on this paper