ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.00578
43
11
v1v2v3v4v5 (latest)

Quantum Indistinguishability for Public Key Encryption

1 March 2020
Tommaso Gagliardoni
Juliane Krämer
Patrick Struck
ArXiv (abs)PDFHTML
Abstract

In this work we study the quantum security of public key encryption schemes. Boneh and Zhandry (CRYPTO'13) initiated this research area for symmetric and public key encryption, albeit restricted to a classical indistinguishability phase. Gagliardoni et al. (CRYPTO'16) advanced the study of quantum security by giving, for symmetric key encryption schemes, the first definition with a quantum indistinguishability phase. For public key encryption schemes, on the other hand, no notion of quantum security with a quantum indistinguishability phase exists. Our main result is a novel quantum security notion (qINDqCPA) for public key encryption with a quantum indistinguishability phase, which closes the aforementioned gap. Furthermore, we show that the canonical LWE-based encryption scheme achieves our quantum security notion, show that our notion is strictly stronger than existing security notions, and study the general classification of quantum-resistant public key encryption schemes. Our core idea follows the approach of Gagliardoni et al. by using so-called type-2 operators for encrypting the challenge message. At first glance, type-2 operators appear unnatural for public key encryption schemes, as the canonical way of building them requires both the secret and the public key. However, we identify a class of encryption schemes - which we call recoverable - and show that for this class of schemes, type-2 operators require merely the public key. Moreover, recoverable schemes allow to realise type-2 operators even if they suffer from decryption failures, which in general thwarts the reversibility mandated by type-2 operators. Our work reveals that many real-world quantum-resistant schemes, including most round 2 NIST PQC candidates, are indeed recoverable.

View on arXiv
Comments on this paper