ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03532
28
6

Stochastic Modified Equations for Continuous Limit of Stochastic ADMM

7 March 2020
Xiang Zhou
Huizhuo Yuan
C. J. Li
Qingyun Sun
ArXivPDFHTML
Abstract

Stochastic version of alternating direction method of multiplier (ADMM) and its variants (linearized ADMM, gradient-based ADMM) plays a key role for modern large scale machine learning problems. One example is the regularized empirical risk minimization problem. In this work, we put different variants of stochastic ADMM into a unified form, which includes standard, linearized and gradient-based ADMM with relaxation, and study their dynamics via a continuous-time model approach. We adapt the mathematical framework of stochastic modified equation (SME), and show that the dynamics of stochastic ADMM is approximated by a class of stochastic differential equations with small noise parameters in the sense of weak approximation. The continuous-time analysis would uncover important analytical insights into the behaviors of the discrete-time algorithm, which are non-trivial to gain otherwise. For example, we could characterize the fluctuation of the solution paths precisely, and decide optimal stopping time to minimize the variance of solution paths.

View on arXiv
Comments on this paper