ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03923
8
114

Deconfounded Image Captioning: A Causal Retrospect

9 March 2020
Xu Yang
Hanwang Zhang
Jianfei Cai
    CML
ArXivPDFHTML
Abstract

Dataset bias in vision-language tasks is becoming one of the main problems which hinders the progress of our community. Existing solutions lack a principled analysis about why modern image captioners easily collapse into dataset bias. In this paper, we present a novel perspective: Deconfounded Image Captioning (DIC), to find out the answer of this question, then retrospect modern neural image captioners, and finally propose a DIC framework: DICv1.0 to alleviate the negative effects brought by dataset bias. DIC is based on causal inference, whose two principles: the backdoor and front-door adjustments, help us review previous studies and design new effective models. In particular, we showcase that DICv1.0 can strengthen two prevailing captioning models and can achieve a single-model 131.1 CIDEr-D and 128.4 c40 CIDEr-D on Karpathy split and online split of the challenging MS COCO dataset, respectively. Interestingly, DICv1.0 is a natural derivation from our causal retrospect, which opens promising directions for image captioning.

View on arXiv
Comments on this paper