ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03977
75
29
v1v2v3v4v5 (latest)

Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule

9 March 2020
Nikhil Iyer
V. Thejas
Nipun Kwatra
Ramachandran Ramjee
Muthian Sivathanu
ArXiv (abs)PDFHTML
Abstract

Several papers argue that wide minima generalize better than narrow minima. In this paper, through detailed experiments that not only corroborate the generalization properties of wide minima, we also provide empirical evidence for a new hypothesis that the density of wide minima is likely lower than the density of narrow minima. Further, motivated by this hypothesis, we design a novel explore-exploit learning rate schedule. On a variety of image and natural language datasets, compared to their original hand-tuned learning rate baselines, we show that our explore-exploit schedule can result in either up to 0.84\% higher absolute accuracy using the original training budget or up to 57\% reduced training time while achieving the original reported accuracy. For example, we achieve state-of-the-art (SOTA) accuracy for IWSLT'14 (DE-EN) and WMT'14 (DE-EN) datasets by just modifying the learning rate schedule of a high performing model.

View on arXiv
Comments on this paper