ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.04180
6
28

Approximate is Good Enough: Probabilistic Variants of Dimensional and Margin Complexity

9 March 2020
Pritish Kamath
Omar Montasser
Nathan Srebro
ArXivPDFHTML
Abstract

We present and study approximate notions of dimensional and margin complexity, which correspond to the minimal dimension or norm of an embedding required to approximate, rather then exactly represent, a given hypothesis class. We show that such notions are not only sufficient for learning using linear predictors or a kernel, but unlike the exact variants, are also necessary. Thus they are better suited for discussing limitations of linear or kernel methods.

View on arXiv
Comments on this paper