ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.06725
70
28
v1v2 (latest)

Wasserstein Distance to Independence Models

15 March 2020
Turku Ozlum cCelik
Asgar Jamneshan
Guido Montúfar
Bernd Sturmfels
Lorenzo Venturello
ArXiv (abs)PDFHTML
Abstract

An independence model for discrete random variables is a Segre-Veronese variety in a probability simplex. Any metric on the set of joint states of the random variables induces a Wasserstein metric on the probability simplex. The unit ball of this polyhedral norm is dual to the Lipschitz polytope. Given any data distribution, we seek to minimize its Wasserstein distance to a fixed independence model. The solution to this optimization problem is a piecewise algebraic function of the data. We compute this function explicitly in small instances, we examine its combinatorial structure and algebraic degrees in the general case, and we present some experimental case studies.

View on arXiv
Comments on this paper