Dual-discriminator GAN: A GAN way of profile face recognition

Abstract
A wealth of angle problems occur when facial recognition is performed: At present, the feature extraction network presents eigenvectors with large differences between the frontal face and profile face recognition of the same person in many cases. For this reason, the state-of-the-art facial recognition network will use multiple samples for the same target to ensure that eigenvector differences caused by angles are ignored during training. However, there is another solution available, which is to generate frontal face images with profile face images before recognition. In this paper, we proposed a method of generating frontal faces with image-to-image profile faces based on Generative Adversarial Network (GAN).
View on arXivComments on this paper