ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.12739
93
2
v1v2v3 (latest)

Modulating Bottom-Up and Top-Down Visual Processing via Language-Conditional Filters

28 March 2020
.Ilker Kesen
Ozan Arkan Can
Erkut Erdem
Aykut Erdem
Deniz Yuret
    VLM
ArXiv (abs)PDFHTMLGithub (4★)
Abstract

How to best integrate linguistic and perceptual processing in multi-modal tasks that involve language and vision is an important open problem. In this work, we argue that the common practice of using language in a top-down manner, to direct visual attention over high-level visual features, may not be optimal. We hypothesize that the use of language to also condition the bottom-up processing from pixels to high-level features can provide benefits to the overall performance. To support our claim, we propose a model for language-vision problems involving dense prediction, and perform experiments on two different multi-modal tasks: image segmentation from referring expressions and language-guided image colorization. We compare results where either one or both of the top-down and bottom-up visual branches are conditioned on language. Our experiments reveal that using language to control the filters for bottom-up visual processing in addition to top-down attention leads to better results on both tasks and achieves state-of-the-art performance. Our analysis of different word types in input expressions suggest that the bottom-up conditioning is especially helpful in the presence of low level visual concepts like color.

View on arXiv
Comments on this paper