ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.13217
8
4

Deep Residual Neural Networks for Image in Speech Steganography

30 March 2020
Shivam Agarwal
S. Venkatraman
ArXivPDFHTML
Abstract

Steganography is the art of hiding a secret message inside a publicly visible carrier message. Ideally, it is done without modifying the carrier, and with minimal loss of information in the secret message. Recently, various deep learning based approaches to steganography have been applied to different message types. We propose a deep learning based technique to hide a source RGB image message inside finite length speech segments without perceptual loss. To achieve this, we train three neural networks; an encoding network to hide the message in the carrier, a decoding network to reconstruct the message from the carrier and an additional image enhancer network to further improve the reconstructed message. We also discuss future improvements to the algorithm proposed.

View on arXiv
Comments on this paper