Adversarial Domain Adaptation with Prototype-Based Normalized Output Conditioner

In this work, we attempt to address unsupervised domain adaptation by devising simple and compact conditional domain adversarial training methods. We first revisit the simple concatenation conditioning strategy where features are concatenated with output predictions as the input of the discriminator. We find the concatenation strategy suffers from the weak conditioning strength. We further demonstrate that enlarging the norm of concatenated predictions can effectively energize the conditional domain alignment. Thus we improve concatenation conditioning by normalizing the output predictions to have the same norm of features, and term the derived method as Normalized OutpUt coNditioner~(NOUN). However, conditioning on raw output predictions for domain alignment, NOUN suffers from inaccurate predictions of the target domain. To this end, we propose to condition the cross-domain feature alignment in the prototype space rather than in the output space. Combining the novel prototype-based conditioning with NOUN, we term the enhanced method as PROtotype-based Normalized OutpUt coNditioner~(PRONOUN). Experiments on both object recognition and semantic segmentation show that NOUN can effectively align the multi-modal structures across domains and even outperform state-of-the-art domain adversarial training methods. Together with prototype-based conditioning, PRONOUN further improves the adaptation performance over NOUN on multiple object recognition benchmarks for UDA.
View on arXiv