ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.00744
21
12
v1v2 (latest)

Pattern graphs: a graphical approach to nonmonotone missing data

1 April 2020
Yen-Chi Chen
ArXiv (abs)PDFHTML
Abstract

We introduce the concept of pattern graphs--directed acyclic graphs representing how response patterns are associated. A pattern graph represents an identifying restriction that is nonparametrically identified/saturated and is often a missing not at random restriction. We introduce a selection model and a pattern mixture model formulations using the pattern graphs and show that they are equivalent. A pattern graph leads to an inverse probability weighting estimator as well as an imputation-based estimator. Asymptotic theories of the estimators are studied and we provide a graph-based recursive procedure for computing both estimators. We propose three graph-based sensitivity analyses and study the equivalence class of pattern graphs.

View on arXiv
Comments on this paper