ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.02202
19
9

Stylistic Dialogue Generation via Information-Guided Reinforcement Learning Strategy

5 April 2020
Yixuan Su
Deng Cai
Yan Wang
Simon Baker
Anna Korhonen
Nigel Collier
Xiaojiang Liu
ArXivPDFHTML
Abstract

Stylistic response generation is crucial for building an engaging dialogue system for industrial use. While it has attracted much research interest, existing methods often generate stylistic responses at the cost of the content quality (relevance and fluency). To enable better balance between the content quality and the style, we introduce a new training strategy, know as Information-Guided Reinforcement Learning (IG-RL). In IG-RL, a training model is encouraged to explore stylistic expressions while being constrained to maintain its content quality. This is achieved by adopting reinforcement learning strategy with statistical style information guidance for quality-preserving explorations. Experiments on two datasets show that the proposed approach outperforms several strong baselines in terms of the overall response performance.

View on arXiv
Comments on this paper