ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.02635
55
23
v1v2v3v4 (latest)

Dualize, Split, Randomize: Fast Nonsmooth Optimization Algorithms

3 April 2020
Adil Salim
Laurent Condat
Konstantin Mishchenko
Peter Richtárik
ArXiv (abs)PDFHTML
Abstract

We introduce a new primal-dual algorithm for minimizing the sum of three convex functions, each of which has its own oracle. Namely, the first one is differentiable, smooth and possibly stochastic, the second is proximable, and the last one is a composition of a proximable function with a linear map. Our theory covers several settings that are not tackled by any existing algorithm; we illustrate their importance with real-world applications. By leveraging variance reduction, we obtain convergence with linear rates under strong convexity and fast sublinear convergence under convexity assumptions. The proposed theory is simple and unified by the umbrella of stochastic Davis-Yin splitting, which we design in this work. Finally, we illustrate the efficiency of our method through numerical experiments.

View on arXiv
Comments on this paper